A Free Environmental Lunch?

The Impact of Environmental Management Systems on Energy Efficiency

Seongkyoon Jeong (Arizona State University, US) Jaeseok Lee (Georgia Institute of Technology, US)

Cost of Convenience?

Environmental Management

Important sustainability practice in business

69% 62% 44% Europe

Asia-Pacific

North America

Environmental policy statements ratio Christiansen and García (2004)

Environmental Management System (EMS)

ISO 14001

- An framework for the effective development of environmental management (Delmas, 2001)
- Based on the principle of continuous improvement and internal assessment (Bansal & Hunter, 2003)
- Enhancement of reputation and environmental performance

Cumulative number of certified facilities (ISO14001)

Survey-based Previous Literature

Author	Sample	Method	Measure	Effect
Alemagi et al. (2006)	Cameroon	Survey	% of positive report on environmental benefits	Positive
Castka and Prajogo (2013)	New Zealand	Survey	5-point Likert scale on reduction in energy and material use	Positive
Djekic et al. (2014)	Serbia	Survey	5-point Likert scale on reduction in energy use	Positive
Mart´ın-Pe˜na et al. (2014)	Spain	Survey	7-point Likert scale on reduction in water, energy, and material use	Positive
Radonjic and Tominc (2006)	Slovenia	Survey	% of positive report on energy consumption reduction	Positive

Conflicting Views

Domain	Operations <i>Management</i>	Environmental <i>Engineering</i>			
Argument	EMS increases energy efficiency	Environmental management decreases energy efficiency			
Reason	Effective management of input resources, including energy	More energy is required for environmental management			
Method	Survey	Simulation and engineering experiment			
Authors	Boiral et al. (2018)	Plappally and Lienhard (2012) Lannelongue and González-Benito (2012)			

Purpose of Study

Research questions

How? Solution?

Q2

Q3

Q1

Does EMS adoption increase or decrease energy efficiency?

Multiple-goals in EMS

Multiple-goals and the ramification

- Multiple goals are often negatively correlated^[1]
- Managerial opportunism, where managers allow for adverse impacts and superficial actions, can occur.^[2]

Energy enables pollution control and prevention

Monitoring activities and related compliance systems
typify EMS and require energy (ISO14001 Clause 4.5.1)

Multiple goals in EMS

- Reduction of pollution
 - Air, water, waste, ...
- Minimization of input resources
 - Raw material, energy, ...
- Risk management
 - Environmental risk, safety, ...

Environment > Energy

Growing attention to energy management, but not enough

- Companies do not focus on energy as an integrated part of environmental management^{[1][2]}
- Why? split incentives, principal-agent relationships, and information imperfections^[3]

Relatively high attention to environmental measures

- In contrast, other environmental indicators (e.g., pollution-related) are well perceived.
- The risk of any hazard from environmental impact associated with the indicators is high.

H1. Environmental management systems decrease energy efficiency

Data

Data Sources

- Yearly panel data (secondary) of South Korean plants from multiple sources:
 - Open Data Portal
 - ENV-INFO SYSTEM
- Plant-level ISO 14001 adoption data from the Korea Accreditation Board
- Time span: **2001-2014** | # of observation: **13,816** | # of plants: **1,768**

Level of analysis: Plant

Dependent variable

■ Energy efficiency (OECD, 2014): Produced value / Energy consumption

Econometric Approach

DID (Difference in differences) and Fixed-effects approach

Selection bias! → Panel IV approach

Subsidy Program Initiation Year

Varies by regions

Sectoral Adoption Rate

Adoptee age vs. Non-adoptee

Results for Q1

Negative impact of EMS

Regression Results for the Impact of ISO 14001 on Energy Efficiency

	Full sample		Adopter sample		2SLS	
/ -					First stage	Second stage
	(1.1)	(1.2)	(1.3)	(1.4)	(1.5)	(1.6)
Dependent variable:	$Log\ \acute{E}E$	Log ÉE	$Log \ \acute{E}E$	Log ÉE	ISO14001	Log ÉE
ISO14001	-0.035*	-0.046***	-0.048^*	-0.038**		-0.167**
	(0.020)	(0.018)	(0.028)	(0.019)		(0.074)
$Log\ Sales$		0.320^{***}	S	0.323^{***}	0.001	0.321***
		(0.011)		(0.014)	(0.001)	(0.008)
Heating Days		-0.000		-0.000	-0.000	-0.000
		(0.000)		(0.000)	(0.000)	(0.000)
Cooling Days		-0.000		-0.000*	0.000	-0.000
		(0.000)		(0.000)	(0.000)	(0.000)
Log Plant Age		-0.020		-0.032	0.034***	-0.015

Yearly Effect

ISO14001 xAdoption age dummy var.

Environmental management systems decrease energy efficiency by 5%

Q2

If EMS adoption decreases energy efficiency, what are the mechanisms?

First Mechanism of the Adverse Effects

Mechanism 1. Increase in facility scale

- Monitoring and controlling environmental outputs require additional facilities^[1]
- Newly introduced facility inevitably consumes extra energy, which lowers energy efficiency

H2a. The increase in facility scale due to the adoption of EMS decreases energy efficiency

Mediation Model Approach

- Estimating the indirect effect (i.e., a x b)
 - GSEM results: -0.010 (p < 0.01)
- Estimating the total effect (i.e., a x b + c)
 - GSEM results: -0.056 (p < 0.05)

Note: *** p < .01, ** p < .05; Sobel test passed; sector fixed effects included instead of plant fixed effects

The increase in facility scale due to EMS decreases energy efficiency by 1% (H2a Supported)

Second Mechanism of the Adverse Effects

Mechanism 2. Intensified level of environmental management

- EMS intensifies the level of environmental management (EM)
- Such environmental management requires more energy to be operated

H2b. Increases in the level of EM due to the adoption of EMS decrease energy efficiency

EM Level Changes via Recertification

- Institutional setting
 - 3-year cycle of recertification
 - Increase in commitment before recertification
 - Estimating the effect of remaining year dummy variable
- Significantly negative effect at Y_{3K-1}

Note: Plant FE, Year FE, and control variables are included in the test

Increases in the level of EM due to EMS decrease energy efficiency (H2b Supported)

Q3

How can firms mitigate the unintended effect caused by EMS adoption?

How to Mitigate the Negative EMS Impact

Role of organizational learning

- Learning-by-doing enables EMS adopters to achieve greater benefits^[1]
- Operations management practices are shared between plants within a firm^[2]

H3. Learning mitigates decreases in energy efficiency caused by the adoption of EMS

Operationalization of Learning

Results for Q3

Note: Plant FE, Year FE and control variables are included in the test Lines cover 95% CI; Dots indicate the estimated mean parameter values

Learning mitigates decreases in energy efficiency caused by EMS (H3 Supported)

Summary

Implications

Implications

Q: We should **NOT** adopt Environmental Management System?

A: Wrong question! Find a way to deal with the negative impact

Complementary standards

Knowledge management

Incentive system for knowledge sharing

Contribution

- First study to use secondary plant-level data in examining the impact of EMS on energy efficiency.
- Addresses discrepancy between the sustainable operations management and environmental engineering literature.
- Shows the negative impact of EMS adoption on energy efficiency and identifies its underlying mechanisms.
- Suggests that organizational learning can mitigate the negative impact.

Thank you