KMAC 경영혁신 연구논문 공모전

Develop Core Technological Competence!

R&D Management of Core Technology Through
Technology Convergence Network and
Innovation Performance of SMEs

Team Technology Management Innovation

Seoul National University

Giwon Kim

♦ Why SMEs?!

"SMEs play a key role in national economies around the world, generating employment and value added..."

99% of total enterprises

70% of total employment

50-60% of total value added

Source: OECD (2017)

Source: OECD (2017)

◆ Innovation in SMEs

• Since the early work of Schumpeter (1934), innovation has been considered as a central importance to all entrepreneurial activities and source of sustainable competitive advantage

<Two literature streams of innovation in SMEs>

Strategy Perspective

Due to globalization and rapidly changing technological environment, innovation is even more critical for the success and survivals of SMEs

(Cefis & Marsili, 2006; Madrid-Guijarro, 2009).

Policy Perspective

• Encouraging innovation in SMEs becomes core industrial initiative for many policy maker for economic development of at regional, or national level

(Kang & Park, 2012; Jones and Tilley, 2003)

◆ Achieving innovation in SMEs?

• Despite of its importance of encouraging innovation of SMEs, they have several inherited problems which hamper their innovation (Madrid-Guijarro et al., 2009; Lee et al, 2010; Xie et al., 2012)

Rapid changing technological paradigm

Lack of financial resources

(Smallbone et al., 2003)

Inadequate human resource

(Hewitt-Dundas, 2006)

Weak technological capability

(Kim et al., 1993; Nooteboom, 1994)

Market uncertainty

Technological complexity

♦ Question?!

how can SMEs strategically overcome those "barriers of innovation"?

(Teece, 1996; Raymond & St-Pierre, 2010; Xie et al., 2010)

◆ Innovation strategy for SMEs

Developing Core Technological Competence!

Core Technological Competence (Coombs, 1996) - Resource: Core Technology • Technological knowledge where a firm has expertise over other technologies, which are derived from concentrated, long-term involvement in R&D (Duysters & Hagedoorn, 2000) - Capability: Organizational • Capability to deploy and coordinate diverse technologies and

capability

expertise with their core technology effectively

(Coombs, 2006)

◆ Why CTC for SMEs?

- Core technological competence enhance R&D efficiency (Duysters & Hagedoorn, 2000)
 - Compared to distributing limited R&D resources on various fields of technologies. pursuing innovation based on core technology where a firm has relative expertise can be more effective

Core technological capability —

Innovation performance

(Huang, 2011; Wang et al., 2004)

- 2 Core technological competence is difficult to imitate (Coombs, 1996)
 - Due to "tacitness" of technological expertise and accumulated know-how on core technology
 - What is even more difficult is **organizational capability** of complex coordination and application of technologies both within production and R&D

 (Miyazaki, 1999; Hamel and Prahalad 1994)

◆ Why CTC for SMEs?

Core technological competence enables firm to diversify into various markets (Prahalad & Hamel, 1990)

Core technologies of 3M

: Adhesive material, Advanced composite material, Additive manufacturing etc..

♦ Limitation of existing studies

1 Existing studies have largely focused on Multi-national Large enterprises

2 Existing measures of CTC is difficult to offer meaningful strategic implication

R&D expenditureThe number of patentR&D intensityLinkage to scientific community(McCutchen Jr & Swamidass, 1996)(Duysters & Hagedoorn, 2000)(Deeds, 2001)(Henderson & Cockburn, 1994)

How can a firm develop their core technological competence?

◆ Approach of this study

• This study aims to offer **R&D** management strategy to <u>develop core technological competence</u> <u>for SMEs</u>.

• The effort of firm to refine their existing knowledge and to search for new knowledge should be balanced.

(Andriopoulos & Lewis, 2009)

②NT Convergence

7

①BT Convergence **3IT**

Technology Convergence Network (TCN) approach

• TCN captures how heterogeneous technological knowledge are combined into new, common unity of technology

(Porter & Rafols, 2009)

General usage: TC at industry-level

Convergence of

IT, BT, and NT

For this study: TC at a firm-level

Adhesive for automobile parts

Adhesive material

Vibration control

Metal composite
(Corrosion)

Technology Convergence Network (TCN) approach

• TCN captures how heterogeneous technological knowledge are combined into new, common unity of technology

(Porter & Rafols, 2009)

General usage: TC at industry-level **For this study**: TC at a firm-level

	Industry-level TCN	Firm-level TCN					
Principal agent	All R&D entities in an industry	Single firm					
Condition	No firm can affect industry-level TCN	Intentional, strategic decision of a firm in converging their technology					
Meaning	Visualizing macroscopic TC trend	Representation of a firm's effort to create technological invention					

Firm-level TCN Technological capability of a firm (Yayavaram & Ahuja, 2008; Xu et al., 2017)

- Shows the pattern of a firm utilizing their technological resource to create tech invention
- Converging technologies require high level of technological skills and expertise (Jeong, 2014; Kim, Jung, & Hwang, 2019)

Core technology in TCN Core Tech Competence of a firm

• Shows the pattern of a firm using core technology in conjunction with other technologies

Firm's capability in using core technology to create technological invention!

Firm-level TCN Technological capability of a firm (Yayavaram & Ahuja, 2008; Xu et al., 2017)

- Shows the pattern of a firm utilizing their technological resource to create tech invention
- Converging technologies require high level of technological skills and expertise (Jeong, 2014; Kim, Jung, & Hwang, 2019)

Core technology in TCN

Core Tech Competence of a firm

1) Construct a firm-level TCN

2) Identify core technology

3) Analyze core technology in TCN

Degree Centrality

Degree Struchole

Between Centrality

Q. In which state of core technology is most beneficial for technological innovation?

Analyzing core technology in TCN

University R&D collaboration

Problems of innovation in SMEs

- R&D manpower, research infrastructure
- financial resource to invest in R&D
- 3 Uncertainty involved in R&D process

What university can offer to SMEs

- R&D human resource, research facility
- Low cost, Government support (Lee & Kang, 2010)
- Risk sharing

University R&D collaboration

Process innovation (e.g. Un & Asakawa, 2015)

Product innovation (e.g. Un et al., 2010)

Financial performance (e.g. George et al., 2012)

Unresolved Question?

"In which condition should SME conduct University R&D collaboration?"

• Effectiveness of R&D collaboration strategy contingent upon technological competence of firm.

(Grigoriu & Roathermel, 2017; Wang et al., 2015)

• Without proper absorptive capacity, external R&D can be detrimental.

(Tsai, 2009)

Unresolved Question?

"In which condition should SME conduct University R&D collaboration?"

1 Degree Centrality of core technology

Equation: $C_D = \frac{\sum_{i=1}^{n} a_i a_i}{n-1}$

Focus: The number of direct linkage of core technology

in TCN

Meaning: How diverse technologies have been converged

with core technology in R&D process?

Benefit

- Learn diverse ways of utilizing their core technology
- Enhance capability in new technologies

Cost

- High risk and uncertainty involved in TC activity
- Less attention to improvement of core technology itself

1 Degree Centrality of core technology

1 Degree Centrality of core technology

Degree Centrality

Technological innovation performance

H1. Degree centrality of core technology has inverted U-shaped relationships with innovation performance of SME

2 Degree structural hole of core technology

Equation:
$$S_D = [\sum_j (1 - \sum_q p_{iq} m_{jq})]/C_j$$

Degree SH of core technology

- Few complementary technologies are converged each other
- Degree SH of core technology

2 Degree structural hole of core technology

• Considering technology convergence require high technological capability, (Jeong, 2014; Kim, Jung, & Hwang, 2019)

Degree SH of core technology

Technological competence in **complementary technologies**

• Competence in both core technology and its complementary technologies enhance CTC

- **♦** Hypothesis development
 - 2 Degree structural hole of core technology

Degree Structural hole

Technological innovation performance

H2. Degree structural hole of core technology has negative relationship with innovation performance of SME

3 Betweenness Centrality of core technology

Equation:
$$C_B = \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{g_{ik}(j)}{g_{ik}} \frac{2}{(n-1)(n-2)}$$

Btw Cen of core technology

• Centrality positioned in whole TC network

Btw Cen of core technology

• Positioned in periphery area of whole TC network

3 Betweenness Centrality of core technology

Btw Cen of core technology

㈜ 슈프리마 HQ

 Core technology is centrally positioned in whole TC network

Btw Cen of core technology

 Core technology is located in the periphery area of whole TC network

Centralization of core technology

- Efficiency of R&D investment (Guan & Liu, 2016)
- ✓ Cognitive distance in converging core technology
- ✓ Influence of core technology in whole R&D

(Xu et al., 2017)

- **♦** Hypothesis development
 - 3 Betweenness Centrality of core technology

Betweenness centrality

(+)

Technological innovation performance

H3. Betweenness centrality of core technology has positive relationship with innovation performance of SME

4 University R&D collaboration

• Considering several benefits that are offered by university for innovation in SMEs

"Positive moderation effect of University R&D Collaboration"

♦ Data & Sample

Sample

- Final sample: 547 Korean SMEs in ICT industry
- List of SMEs were obtained in SMINFO database, which are offered by Ministry of SMEs and Startups (MSS)
- SMEs in ICT industry are distinguished based on industry code (C26, C28)
 - ✓ C26: Manufacture of electronic components, computer; visual, sounding and communication equipment
 - ✓ C28: Manufacture of electrical equipment

Data source

- For patent data, **KIPRIS** (From 1970 to 2017)
 - ✓ KIPRIS: a web-based patent data searching engine managed by the Korean Intellectual Property Office (KIPO)
- For financial information of firm, **KISVALUE**
 - ✓ KISVALUE: firm database which is managed by NICE information service corporation of Korea.

◆ Empirical setting

✓ Computed by UCINET 6 (Borgatti et al., 2002).

Construction of TCN

- 547 TC networks for each of 547 SMEs
- Technological field: Patent IPC code
- TC network based on **co-occurrence network** of technology classification code (IPC code)

◆ Identification of Core technology

• Percentage share of certain IPC to whole IPC occurrences $=\frac{PC_i}{\sum_{i=1}^{n} PC_i}$

Core technology if the value of
$$\frac{PC_i}{\sum_{i=1}^{n} PC_i}$$
 > 7 % (higher standards compared to 3% suggested by)

♦ Variables

- Dependent variable > the number of patent newly applied during five-year of observation period (2011 2015)
- Independent variable > Degree Centrality, Degree Structural hole, Betweenness Centrality
- Moderation variable > University R&D collaboration: the number of patent co-applied by firm and university during observation period (Henderson et al., 1998; Geuna and Nesta, 2006)
- Control variables

Firm age Firm size Sales

Return to Sale Diversity of Knowledge

University R&D collaboration

Number of core knowledge element

Total number of R&D collaboration

♦ Statistical Method

Negative binomial regression

```
Innovation perform \ ance i = exp \left(\beta_1 + \beta_2 Deg_{Cen} + \beta_3 Deg_{Struchole} + \beta_4 Btw_{Cen} + \beta_5 Deg_{Cen} * UnR \&D + \beta_6 Degstruc * UnR \&D + \beta_7 Btw Cen * UnR \&D + \beta_8 w_1 + \beta_9 w_2 + \beta_{10} w_3 + \beta_{11} w_4 + \beta_{12} w_6 + \beta_{13} w_7 + \beta_{14} w_8 + \beta_{15} w_9 + + \varepsilon_i\right)
w_i = control \quad variables \quad , \quad i = 1, ..., 9
```

- As our dependent variable is count variable, well-known examples of generalized linear model are Poisson regression and Negative binomial regression.
- However, our data shows over-dispersion, i.e., variance of outcome variables take larger value than conditional mean, this study used negative binomial regression.

♦ Results

Table 1
Simple correlation matrix

Variables	Mean	S.D	1	2	3	4	5	6	7	8	9	10	11
1. DV	10.297	17.74			•	-			•				
2. Firm age	16.323	78.285	-0.1385										
3. Firm size	93.261	78.285	0.2437	0.1611									
4. Firm sale	3299	3663	0.2501	0.1428	0.5494								
5. Returns to sales	146.7	708.07	0.2558	0.037	0.2613	0.4904							
6. Diversity of knowledge	28.294	29.373	0.5251	0.0985	0.192	0.279	0.3508						
7. Number of core elements	2.877	1.520	0.0293	-0.0226	0.0249	0.0011	0.0391	-0.0729					
8. Total R&D collaboration	0.638	1.503	0.2781	-0.0617	0.1595	0.2311	0.0602	0.1899	-0.0723				
9. University collaboration	0.159	0.683	0.2163	-0.0682	0.0695	0.0699	-0.0058	0.0692	-0.0094	0.5408			
10. Degree centrality	0.297	0.171	-0.0333	-0.1904	-0.1323	-0.0747	-0.021	-0.2378	-0.0122	-0.0058	0.0107		
11. Degree structural hole	0.495	0.246	-0.2981	-0.0549	-0.1655	-0.1734	-0.0983	-0.5079	0.0407	-0.2081	-0.1245	-0.142	
12. Betweenness centrality	0.089	0.104	0.1387	-0.075	-0.0427	-0.031	-0.0212	0.062	-0.0821	0.0415	0.0313	0.6134	-0.4063

♦ Results

Table3. Results of negative binomial regression

Variables			vation performance			
	Model1	Model2	Model3	Model4	Model5	Model6
Control variables						
Time and	-0.044***	-0.044***	-0.043***	-0.044***	-0.042***	-0.043***
Firm age	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Firm size	0.001**	0.001**	0.001***	0.001**	0.001***	0.001**
Filmi size	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Calan	0.000**	0.000**	0.000**	0.000***	0.000***	0.000***
Sales	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Determined and	-0.000***	-0.000***	-0.000**	-0.000**	-0.000***	-0.000**
Returns to Sale	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Discribe SW 11	0.016***	0.017***	0.016***	0.012***	0.016***	0.011***
Diversity of Knowledge	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
27-1	0.065**	0.066**	0.053*	0.060*	0.069**	0.054*
Number of core element	(0.032)	(0.032)	(0.032)	(0.031)	(0.031)	(0.031)
	0.135***	0.135***	0.133***	0.125***	0.133***	0.126***
Total R&D collaboration	(0.040)	(0.040)	(0.004)	(0.039)	(0.039)	(0.038)
	0.140*	0.137*	0.130*	0.133*	0.123	0.124
Total University collaboration	(0.079)	(0.080)	(0.079)	(0.078)	(0.079)	(0.077)
Independent variables						
		0.147	2.399***			1.178
Degree centrality		(0.316)	(0.898)			(0.947)
(D			-2.889***			-2.621**
(Degree centrality)^2			(1.072)			(1.099)
D 11.1				-0.799***		-0.567**
Degree structural hole				(0.223)		(0.260)
				122	1.340***	1.620***
Betweenness centrality					(0.465)	(0.617)
	1.683***	1.623***	1.327***	2.215***	1.520***	1.939***
Constamt	(0.152)	(0.199)	(0.224)	(0.213)	(0.160)	(0.329)
Number of observation	547	547	547	547	547	547
Log likelihodd	-1700.3304	-1700.2214	-1696.8123	-1694.2227	-1695.9039	-1688.0748

♦ Results

1

Degree Centrality of core technology

Core technology portfolio and innovation performance									
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6			
Degree Centrality		0.147 (0.316)	2.389*** (0.901)			1.178 (0.947)			
(Degree Centrality)^2		,	-2.881*** (1.074)			-2.621** (1.099)			
Degree Structural hole				-0.827*** (0.227)		-0.567** (0.260)			
Betweenness Centrality				. ,	1.336*** (0.467)	1.620*** (0.617)			

***:p<0.01, **:p<0.05, *:p<0.1; standard errors in parentheses

Hypothesis 1 supported

Degree Centrality

Technological innovation performance

2

Degree Structural hole of core technology

Core technology portfolio and innovation performance						
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Degree Centrality		0.147 (0.316)	2.389*** (0.901)			1.178 (0.947)
(Degree Centrality)^2			-2.881*** (1.074)			-2.621** _(1.0 <u>9</u> 9)
Degree Structural hole			,	-0.827*** (0.227)		-0.567** (0.260)
Betweenness Centrality					1.336*** (0.467)	1.620*** (0.617)

***:p<0.01, **:p<0.05, *:p<0.1; standard errors in parentheses

Hypothesis 2 supported

Degree Structural hole

Technological innovation performance

3

Betweenness Centrality of core technology

) / 1 1 1	N. 1.1.0	M - 1-1 2	N	3.6.1.1.7	N. 1.1.6
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Degree Centrality		0.147 (0.316)	2.389*** (0.901)			1.178 (0.947)
(Degree Centrality)^2		(0.310)	-2.881*** (1.074)			-2.621** (1.099)
Degree Structural hole			(=====)	-0.827*** (0.227)		-0.567** (0.260)
Betweenness Centrality				, ,	1.336*** (0.467)	1.620*** (0.617)

***:p<0.01, **:p<0.05, *:p<0.1; standard errors in parentheses

Hypothesis 3 supported

Betweenness centrality

Technological innovation performance

Table4. Results of negative binomial regression

Variables	Interaction of core technology and university collaboration					
	Model1	Model2	Model3	Model4	Model5	
Control variables	101.0					
Firm age	-0.044***	-0.043***	-0.044***	-0.042***	-0.044***	
1 mm age	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	
Firm size	0.001**	0.001**	0.001**	0.001**	0.001**	
Thin size	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
Sales	0.000**	0.000**	0.000***	0.000***	0.000***	
3416	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
Returns to Sale	-0.000***	-0.000**	-0.000***	-0.000***	-0.000**	
Returns to Sale	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
Diversity of Knowledge	0.016***	0.016	0.013***	0.016***	0.011***	
Diversity of Knowledge	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
Number of core element	0.065**	0.047	0.054*	0.063**	0.043	
Number of core element	(0.032)	(0.032)	(0.031)	(0.031)	(0.031)	
Total B &D authoration	0.135***	0.132***	0.127***	0.135***	0.126***	
Total R&D collaboration	(0.040)	(0.040)	(0.039)	(0.040)	(0.038)	
T-4-11T-iittiti	0.140*	-0.125	-0.084	-0.061	-0.195	
Total University collaboration	(0.079)	(0.227)	(0.137)	(0.119)	(0.239)	
Independent variables						
Degree centrality		2.110**			0.792	
Degree centrality		(0.920)			(0.972)	
Ø		-2.652**			-2.239**	
(Degree centrality)^2		(1.087)			(1.118)	
D			-0.843***		-0.689***	
Degree structural hole			(0.224)		(0.266)	
D. C.				1.144**	1.412**	
Betweenness centrality				(0.470)	(0.625)	
D		0.895			-0.593	
Degree centrality X University collaboration		(1.665)			(1.882)	
(D		-0.341			1.496	
(Degree centrality)^2 X University collaboration		(2.721)			(2.671)	
			0.609*		0.532	
Degree structural hole X University collaboration			(0.349)		(0.401)	
				1.517*	0.960	
Betweeneess centrality X University Collaboration				(0.835)	(1.043)	
	1.720***	1.409***	2.241***	1.555***	2.129***	
Constamt	(0.154)	(0.231)	(0.213)	(0.160)	(0.344)	
Number of observation	547	547	547	547	547	
C+10+140000+1+1+15110+15177 (4555) = =	-1703.0245	-1695.583	-1692.7749			

4

Moderation of University R&D collaboration

Degree centrality of core technology

	Moderating role of U	oderating role of University R&D Collaboration			
	Model 2	Model 3	Model 4		
Degree Centrality	1.960** (0.900)				
(Degree Centrality)^2	-2.568** (1.071)				
University collaboration	-0.171 (0.227)				
Degree Centrality X University Collaboration	0.961 (1.649)				
(Degree Centrality)^2 X University Collaborate	ion (2.681)				

***:p<0.01, **:p<0.05, *:p<0.1; standard errors in parentheses

5 Moderation of University R&D collaboration

Degree Structural hole of core technology

	Moderating role of University R&D Collaboration		
	Model 5	Model 6	Model 7
Degree Structural hole		-0.870*** (0.227)	
University Collaboration		-0.08 (1.137)	
Degree Structural hole X University Collabo		0.607* (0.350)	

***:p<0.01, **:p<0.05, *:p<0.1; standard errors in parentheses

5 Moderation of University R&D collaboration

❖ Degree Structural hole of core technology

Low Degree Structural hole

High Degree Structural hole

6

Moderation of University R&D collaboration

Betweenness Centrality of core technology

M	Moderating role of University R&D Collaboration			
	Model 5	Model 6	Model 7	
Betweenness Centrality			1.142*** (0.471)	
University Collaboration			-0.061 (0.120)	
Betweenness Cenrality X University Collaboration	L		1.515** (0.8358)	

***:p<0.01, **:p<0.05, *:p<0.1; standard errors in parentheses

6 Moderation of University R&D collaboration

Betweenness Centrality of core technology

Low Betweenness Centrality

High Betweenness Centrality

♦ Discussion

Contributions

- This study expands the application scope of technology convergence by focusing on firm-level TC network.
 - ✓ most prior studies have focused on macroscopic technology convergence which often occurs at industry-level or entire technological domains
- This study contributes to strategy research for SMEs.
 - ✓ Core technological competence is mostly discussed in the context of large, multi-national enterprises,
 - ✓ This study offer strategic framework to apply the CTC for specific context of SMEs!
 - "How to develop core technological competence in SMEs "

Discussion

Implications

R&D Management strategy for innovation of SMEs

1 Degree centrality Perspective

- Degree Centrality

 Technological innovation performance
- ✓ Too much or too little TC activity of core technology is harmful for future technological innovation.
- 2 Degree structural hole Perspective

- ✓ Having capabilities in not only core technology but also complementary technologies of core technology are important.
- Betweenness Centrality Perspective

 Betweenness centrality

 (+)

 Technological innovation performance

✓ Manage core technology to have wider relation with other technologies and to have a higher influence in overall firm R&D activity.

◆ Discussion

Implications

R&D Management strategy for innovation of SMEs

University R&D collaboration

Degree structural hole

Betweenness Centrality

Beneficial for innovation when SME's

• Core technology has high degree structural hole value

Weak capability in complementary technologies
(Grigoriu & Rothaermel, 2017)

Beneficial for innovation when SME's

- Core technology has high betweenness centrality
- When Btw Cen is low, adverse impact on innovation

◆ Discussion

Limitations and Future research

- Firstly, this study relies heavily on patent data.
 - ✓ Several innate limitations it has to capture innovation performance
 - Conduct another analysis based on **product data** (product functionality, design etc.)
- Secondly, this study focuses only on university as a potential R&D partner.
 - ✓ Best way to suggest university as good collaborator is comparing with other types of partner
 - Comparison with strategic alliance and university collaboration
- Third, this study only considers SMEs in single industry, the ICT industry.
 - Research on SMEs in other high-tech industries such as biopharmaceutical, mechanical engineering etc.

THANK YOU!

Giwon Kim

E-mail: michael7788@snu.ac.kr michaelkim7788@gmail.com

Why UI collabo instead of strategic alliance for SMEs

• Strategic alliance can be ineffective strategy for SMEs and for their competence due to following reasons:

(Prahalad & Hamel, 1990; Hamel, 1991; Lei & Slocum, 1992)

```
1st, Technological alliances are more probable to fail than expected
(Kale & Singh, 2009; Wittmann, Hunt & Arnett, 2009)
```

2nd, Technological alliances require **considerable managerial attention** (Hitt, Hoskisson & Ireland, 1990)

3rd, Technological alliances may **negatively affect internal R&D process** due to trade-off relationship (Higgins & Rodriguez, 2006; Laursen & Salter, 2006)

4th, SME may difficult to absorb external knowledge from partner due to weak absorptive capacity
(Cohen & Levinthal, 1989)

• Instead of strategic alliance, this study suggest *R&D collaboration with university* as effective knowledge sourcing strategy for SMEs and their competence.

(Zeng et al., 2010)

Barriers of innovation for SMEs

Source: Survey results of Lee et al., (2010)

Ranking	Barriers of Innovation for SMEs
1	Difficulties in finding suitable manpower in a labour market
2	Short of suitable manpower within the firm
3	Market uncertainty in innovative product
4	Imitation possibilities of technology innovation
5	Short of ability in R&D planning and management

Table 2
Results of Variance Inflation Factor(VIF) test

Variable	VIF	1/VIF
Betweenness centrality	1.96	0.509636
Degree centrality	1.93	0.517161
Firm Sales	1.85	0.540990
Diversity of knowledge	1.83	0.546234
Degree structural hole	1.75	0.570411
Total R&D collaboration	1.56	0.642896
Returns to sales	1.48	0.675413
Firm size	1.48	0.675418
University collaboration	1.43	0.700979
Firm age	1.08	0.921989
Number of core elements	1.02	0.975691
Mean	1.58	

Free from the threat of multicollinearity problem as mean and maximum value of VIF is lower than recommended ceiling of 5. (Cohen et al., 2003; Hair et al., 1995)

♦ Robustness check

• For robustness check, this study set 2-year time lag and conduct additional regression and found no significant change in (1) direction of coefficient, and (2) statistical significance.

Appendix

♦ Identification of core technology

- Granstrand et al., (1997), Phene et al., (2012), and Shin et al., (2017) all used *percentage share* of technological subfield for identification and used *three-percentage* as minimum standard for core technology
- However, SMEs are different from LE and MNC in terms of R&D intensity, the number of patent, patent propensity etc.

- Instead of simply following prior studies, we set minimum standard as **seven-percentage** compared to three-percentage suggested by Granstrand et al., (1997).
 - Audretsch and Acs (1991) who compared the number of patent in large firms and SMEs found that large firms tend to have patents twice as that of SMEs.
 - Andries and Feams (2013) also found that the number of patents in large firms is slightly more than double of that in SMEs.